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Abstract 

We show that the R + CR* theory for homogeneous spacetimes, satisfies all the energy 
conditions required by the NHT and 80 it inflates. As the Universe approaches this phase it ha4 
already become sufficiently flat and isotropic, leaving the production of density perturbations to 
the de Sitter phase. When there is an explicit 6 term i.e. R+rR’ -26 the model naturally leads 
into double inflation, where the R* inflationary phase is followed by the A driven phase but this 
has a non-standard vacuum energy. We investigate the constraints on the initial conditions due 
to the finite duration of the Ra inflation and find that all but a small fraction of the available 
phase space leads to sufficient inflation. 
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1. Introduction. Inflationary Cosmologies [l] provide, if not the only, certainly the best 
dynamical explanation as to why the Universe we observe is so homogeneous and isotropic on 
very large scales. For the same token Inflation is capable of producing the density perturbations 
required to generate structure in the Universe. Until recently inflation had stood as the only 
theory capable of producing structure in the universe, today an alternative scenario can be 
provided by the Cosmic String Theory and it is only fair to say that the winner is yet to be 
found ( see Turner in [l] for a review on Inflation and [z] for one on Cosmic Strings). The area 
where Inflation stays unchallenged (at lesst at the classical level) is that of initiaI conditions. It 
may provide us with a scenario where initial conditions for the Universe are almost unimportant, 
or. their specification does not have to be perfectly accurate. 

Among the half dozen or so inflationary models that we have now, those based on higher 
derivative gravity stand out as they do not require the. addition of an arbitrary scalar field 
introduced solely to generate the inflationary expansion. In the original model proposed by 
Starobinsky [3] the de Sitter phase was driven by the trace anomaly of the energy momentum 
tensor, while in the more flexible R* model, the so called improved Storobinsky model [4,5] based 
on a lagrangian of the form, 

there is an inflationary phase where the Hubble parameter H decays linearly in time. The study 
of this model [5] has shown that in order to have sufficient inflation we require e to satisfy 
10% < 6 < 10lsG, and Hi > H,,oti=.n v lo-%I,,,. 

Just like any other inflationary model, the RZ model has been formulated within the realm of 
the spatially Eat homogeneous and isotropic Robertson-Walker (RW) background. As it stands 
it can be the subject of the same criticism as the standard RW inflationary model concerning the 
strong restrictions imposed on the geometry. That is, we could question whether the inflationary 
features are not particular to, and dependant upon, the high degree of symmetry of the model. 
In the case of standard General Relativity it has been shown that inflation will always occur 
for open or flat anisotropic models regardless of the type of inflation. i.e. either old Inflation, 
a la Guth [1,6], new inflation [1,7] or chaotic inflation [8,9]. There are even formal proves of 
this statement as in the work of Wald [lo]. In the context of inhomogeneous models several 
exact solutions exist (11) that show inflation will occur under very general conditions and even 
a formal proof of the so called No Hair Theorem (NHT) has been put forward by Jensen and 
Stein-Schabes (121. The theorem states the following: 

Any solution of Einstein’s equation with a positive cosmological constant that i) accepts 
a synchronous coordinate system, ii) has a non positive three curvature, iii) hss an energy- 
momentum tensor satisfying the Strong and Dominant Energy Conditions (SEC and DEC re 
spectively), will become asymptotically de Sitter (at least on patch). 

If the models considered are homogeneous, then the theorem holds globally. Before we prc- 
teed a few comments are in order. The matter fields that obey the energy conditions are not 
the nnes producing inflation, this should be obvious since the cosmological constant violates one 
of these. Any contribution to the stress tensor coming from matter that satisfies the energy 
conditions would rapidly be redshifted away. The remanent stress tensor, the one that via- 
late8 the energy conditions, will eventually dominate the dynamics as a slowly varying effective 
cosmological constant. For closed universes, those with 3R > 0, the de Sitter phase could be 
prevented altogether if the universe recollapses very early on ( see [13] for an interesting account 
of closed models). Therefore, condition (ii) excludes the closed S-geometries (like Bianchi IX ). 

The purpose of this letter is to show that within the context of the higher derivative theories, 
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and restricting ourselves to open or Eat homogeneous apacetimes, an equivalent NHT holds and 
inflation will almost always take place. Furthermore, we shall show that this happens with or 
without a cosmological constant A. If A > 0 then the model naturally leads into double inflation. 
This has been suggested by Turner and Silk and Turner et al [14] to account for the Large Scale 
Structure (LSC) of the Universe. 

The proof will follow in spirit the one for homogeneous spacetimes (lo], and its extension 
to inhomogeneous cases [lo]. Moreover, it will be shown that this problem, which at first sight 
might appear rather formidable, is actually no more complex than that for Einstein’s gravity. 
The limits imposed due to the finite duration of the R* inflationary phase will be examined in 
Sec. 3 and as a consequence of this we will conclude that within the classical domain almost 
all models will inflate regardless of the initial conditions. Of course, to give a full answer to the 
problem of initial conditions we will need to use Quantum Cosmology. 

2. The Energy Conditions. Case I: A = 0. We will show that the higher derivative 
gravity model satisfies all the conditions required for the applicability of the NHT. This can can 
be done by transforming the Lagrangian (1) into that of Einstein’s gravity coupled to a scalar 
field 1151. Then we shall show that the energy momentum tensor derived for this scalar field 
satisfies iii) and then conclude that these models will inflate. 

Let us start by making the following conformal transformation 1151, 

Bd - imp = (1 + 2d&d (2) 

and introduce a new field + = log(1 + 2cR). Then the action constructed out of (1) and (2) 
becomes, 

where, 

s= -$pz&+-2i) - q(a&3’$+q,))] (3) 

P(Jt) = 4fib?e-qe-+ - 2) (4) 
and $ = - &, A E 3&j = &, and A is the Ricci scalar curvature constructed using the 
conformally transformed metric &,g. 
(i) and (ii), so does &,a. 

Thii we shall call, the conformal picture. If 8-8 satisfies 
We will restrict our attention to the case I+ 2cR > 0, (this is necessary 

for the conformal transformation not to invert the signature of the metric, and for $ to be well 
defined). The potential p(+) (including the effective cosmological constant ;i) is shown in Fig.1. 

The energy momentum tensor derived from the previous action is 

% = g [a,+%+ - ii&&” (a&q + C($))] (5) 

As stated before we will concentrate on homogeneous spacetimes where the metric can he 
written as 

da’ = -dt* + hij(t)u (6) 

where the wi are the one forms satisfying the group relations dw’ = C’$wjwr: with C$, the 
structure constants of the Bianchi Models [16]. The equations get greatly simplify in these cases 
since the Ricci scalar R becomes only a function of time. 

The DEC states that Tp,tW 2 0 and lT,,#j > 0 for any timelike tP (Pt, < 0) [17] The 
first part of the condition becomes 
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while the second part gives 

The SEC is given by the following inequality T,,,tW 2 -4T for any timelike vector P. In 
our caw it reduces to 

((w+;)+2V(+)>o (9) 

From Fig.1 and the explicit form for the potential it is clear that the SEC is alwayssatisfied, due 
to the fact that the potential is negative. The DEC will be also satisfied for large values of the 
curvature, i.e. 11, large. This is a peculiar situation, as in general when one of these is violated, 
it is the SEC and not the DEC, but since these conditions are independent [17] there there in 
no conflict. Furthermore, the characteristic time scale on which the field varies in this case is of 
order i 5 i. w \/;ir& - 1, which translates into r. w 4; since one expects processes at high 
curvature to vary on Planck time-scales, it is plausible that the DEC is indeed satisfied. As we 
go towards lower curvature, je($)[ increases and the DEC, as it stands, is in general violated. 
This is because the 11, field acts as an inflaton. The remedy is simple: we deprive the 1/, field of 
its potential by defining 

A(+) = X(1 -e-q* 00) 

The DEC is now trivially satisfied but the attractor is now i($). The shear, spatial curvature 
and kinetic term all decay as exp(-fi), where, 

(11) 

It is precisely the i(+) dominated phase that corresponds to the de Sitter-like R* inflation with 
linearly decreasing Huhble parameter. Thus, we can conclude that the RZ inflation behaves as 
an attractor for any open or Bat homogeneous background. 

Case II: A > 0. In this ctie we assume the existence of a non-zero cosmological constant. 
This could be thought as coming from some extra scalar field that would produce inflation in 
the standard scenario. The starting point is the Lagrangian 

&=- &(R + CR’ - 2A) (12) 

The argument is almost identical to the used before. The new potential is now given, in the 
conformal picture by, 

iq$) = 4&+-* 
1 
e-$(1 + ;, - 2 1 (13) 

we could also define a curvature dependent cosmological constant by 

ii(+) = f [;i (1 - e-*)’ + A&] 

this is also depicted in fig 1 (again including the effective li term). The SEC is easily satisfied 
for all curvatures. However, the DEC obeys a similar equation as in case I and as a result the 
attractor is driven by X($J) rather than by ii. At high curvatures, when $ -+ +,,lpl, we have 

i($) w IT, and the R1 term dominates. Thus, if the universe starts to the far right of the global 
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minimum, it will undergo inflation driven by the R* term. As the curvature drops, the universe 
rolls towards the minimum where it may undergo inflation for a second time. Since at the 
minimum the curvature has the de Sitter value R = 4A, thii second phase could be thought of 
as being driven by the A term alone. However, the total vacuum energy at the global minimum 
is in general larger than A, so reflecting the possible strong influence of the R2 term. One finds, 
(in physical space-time) that, 

Amin = A(1 + ;) (15) 

Following Barrow and Ottewill [lS], we can see that the maximally symmetric space satisfies 
the equations of motion. Thus, the final state of the R + cR2 - 2A theory, that sits at the 
global minimum of the potential, is indeed the de Sitter space-time, despite the fact that the 
vacuum energy is different. The horizon will be present and the generation of perturbations will 
proceed in the usual way. Of course, we then have to somehow make the global minimum of the 
potential go to zero. This is no problem if thii second cosmological constant comes from some 
scalar field potential. Thus in the R2 model with a cosmological constant we have a realization 
of the so called double inflation whose potential in explaining the large scale structure in the 
present universe has been pointed out in [14]. Some basic properties of the multiple inflationary 
phase in the presence of R* term have been outlined in the last two references in [4]. Here, we 
have established that such a phase will be present in any open or flat homogeneous background. 

To finalize this section, let us observe that the dynamics of this inflationary phase depends 
strongly on the ratio A/& As J, approaches its ground state it will oscillate with a characteristic 
frequency 

If A < i FJ 110’sGeV)2, the R2 inflation and the A driven inflation are well separated. 
However, if A > A, the minimum would be rather shallow and the oscillations would sweep over 
a broad range, lasting many Hubble times (w-l w a&l), which would then modify the end 

of the R* phase. This could be important, as during this late stage, the scales of interest are 
pushed outside of the horizon. 

3. Preinflationary phase. In a model with a true cosmological constant the de Sitter 
phase is infinitely long and any initial anisotropy or spatial curvature will be eventually diluted. 
In inflationary models however, not only the vacuum energy relaxes to zero after some finite 
time, but there are values of the curvature below which inflation will not take place. In particular 
in the R2 model this limit is given by & m l/r, or more precisely, He M -& [5]. On the other 

hand, the space of initial data can not be arbitrarily large as we can use the classical description 

only when R I m;,, and I#] 5 m,,,. 
translates into 

In the conformal picture (for the homogeneous case) it 

(17) 

( > 
d# ’ < 6 
is -iG’ (18) 

where (since we are using a synchronous gauge), dt2 = (1 + 2cR)dt2, C2 stands for the shear, 
ri is the extrinsic curvature, and $I = 1 Jip$. The classical evolution that is responsible for the 
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present dey isotropy end flatness takes place during the stage R, I R < m$. We shall say that 
the universe enters an infletionary phase et R = & if, 

ii(h) > q+.), (19) 

and 
G;, 3&, 12zG4; 5 12aC&, (20) 

de*= l&l = &yp(- e), is the slide-down velocity during the RZ inflation. 

Thus, the inflationary phase starts when all exponentially decaying quantities are et most 
of order o(l/(~R)~), and thereby subdominant with respect to the vacuum energy i($) which 
contains e (negative) correction to the cosmological constant i-l = Se of order O(l/rR). Jf any 
of the exponentially decaying quantities fell below Jf”j(&) only et some R+ < &, then there 
will be no inflationary phase et all. The vecuum energy would level off with the kinetic term 
and particle production would take place through the oscillations of the spacetime background, 
which in general may still have some finite anisotropy or spatial curvature. The reheating phase 
will be then very different from the one that follows the inflationary phase. The Universe may 
eventually become isotropic (due to particle production), but will not have the cosmological 
perturbetions characteristic to inflation, i.e. an almost flat spectrum. The task of generating 
the large scale structure would then fall on cosmic strings or some yet unknown mechanism. 

If & - &, the universe will become flat end isotropic by this time. The rehesting phase will 
be the same as in the R2 inflation, but again there will be no perturbations present on scales 
larger than the horizon. 

For & 2 Rbcron - 10-sm~,, the universe would go through an infletionary phase that 
generates perturbations on scales up to the present horizon size and beyond. If R+ > R. - 
10+m2 Pi’ then eternal inflation takes place [19]. For Rh onrDn 2 & I & the perturbation 
spectrum would have e cut-off et some very large scale given by [5] 

where Ho is the current Hubble parameter, Rho,+,n = 12Hi,,rirm, and & = 12Hj. 
Whet is apparent from this discussion is thst the presence of the (effective) cosmological 

constant might indeed be responsible for the present isotropy and flatness of the Universe, but 
not because there is inflation but because of the epproach to inflation: the anisotropy and spatial 
curvature are smoothed out during thii prcinflotionary phase. Here by Metion we mean the 
isotropic de Sitter expansion with Ikl << H2. It is possible to think of inflation in anisotropic 
models as e phase where all three directions expand exponentially but with different rates and the 
shear decays exponentially. However, there is no clean, general notion of ‘inflationary” expansion 
in the context of an arbitrary homogeneous models, and it becomes especially murky when we 
come down to calculating the perturbations. On the other hand, the attraction towards the 
cosmological constant driven phase is e completely general feature and an efficient mechanism 
of isotropisation. Thus, we will choose here to separate the two evolutionary phases into a 
preinfletionary phase, with its decay of anisotropy and spstial curvsture, and the infletionary 
phase with its calculable spectrum of density perturbations. 

We have seen ebove that the i($) driven phase is an attractor. To translete this into a 
statement about the likelihood of in&Con we should identify the range of initial data for which 
& I Rhtironr and similarly for RhOtiz.n 2 & 1 &. 
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An analysis of the classical evolution (within the restrictions imposed by the RW background) 
for various initial conditions have been done in [5]. Here, it will be useful to carry a discussion 
in the conformal picture as one can readily extend it to arbitrary open or flat homogeneous 
backgrounds. The technique used is similar to that used in [9,20], for the case of e massive 
scalar field. Using the fact that the beheviour of the shear and the spatial curvature are bounded 
[lO,lZ], it is not difficult to extend the enalysis to anisotropic models and to consider cases other 
than & = &. 

Fir+ we shall examine the case of e RW background. The configuration space is spanned by 
4 and 4. In terms of suitable chosen dimensionless variables z = 1 - e-* and y = &/Z/p, the 
classically allowed domain is given by, 

If the kinetic term dominates the energy, then the clessical trejectory will be given by 

Y=Yimf(Zi) (e)' 

de*= Yinf(zi) = -&( - .) 1 z, , end we have assumed that the trajectory p-sea through the point 

2,; waft,;, H ere, zi represents the extreme points on the phase plane where Rz int7etion 
Thii are essentially given by the bounds on c obtained in [5]. We wish to 

know when dd classical trajectories that pass through the extreme points (zaruiinf(za)) and 

( zhoris.nr Wnf(Zhotimn)) hit th e q ucmtum boundary. Using eqs. (22) and (23) we find that for 
the non-infiationary trajectories, the boundary ia hit et e curvature of order & N R,, while for 
the best poeeible scenario in which we get at least 7Oe-folds we get & - 102Rbe.0,,. This is of 
course nothing more than just an explicit solution for the exponential bound on the decay law. 
If we add the shear and spstial curvature, the configuration space becomes four-dimensional. 
The classically allowed domain is cut ,by Ii? 5 ic, via the constraint equation. 

Ram eq. (17) we can see that these two new degrees of freedom obey e similar bound on the 
exponential law and have essentially the same restrictions on their possible initial values (eee 
also [21]). The classical trajectory can be projected onto the planes (11, y), ((/I,&), ($,B2). 
The difference is that due to the constraint equstion, the maximal initial values for y should be 
less than in the RW case. 

Since an explicit solution for the classical trajectory is not available one might worry that 
perhaps the vacuum energy decays too fast and can never dominate the other three contributions, 
despite their own (exponential) decay. However one finds, 

(24) 

which is less than one for R > 4&, end as small as 10e3 for R = Rbezon. Thus, again we 
have almost “vertical” trajectories, where the kinetic term, the shear and spatial curvature relax 
violently while the vacuum energy undergoes little changes. Thus, we may conclude as before: 
if & > &, we should have & > &, and the universe should become isotropic and Eat with 
or without passing through the exponentially expanding inflationary phase (as defined above); 
if & 2 102R~~~,,,, - (10’sGeV)2, we will have & Z &,,j,,,” and the universe will undergo 

inflation of et leaat - 70 e-folds. The approximate relationship is &o(R) FJ (CR+):. In terms 
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of &,, this leaves more then half the configuration space as favorable to inflation and almost 
all that leads to the isotropic end flat universe (because en effective cosmological constant is 
present, even if not dominant). We may conclude that the situation is now reversed: one has 
to fine tune the initial conditions in the homogeneous but enisotropic universe in order to avoid 
inflation. 

4. Conclusions We have analyzed e Lagrangian of the form C = R + cR2 - 26 for the case 
of homogeneous but anisotropic metrics, end showed that the model undergoes inflation (except 
for maybe Bianchi IX). We prove thii by using e conformal transformation of the metric that 
turns the above mentioned Lagrangian into one representing a scalar field minimally coupled to 
gravity. 

When A = 0, the model undergoes R’ inflation, characterized by the linear decay of the 
Hubble parameter. In thii case we showed that the stress tensor constructed for thii theory, 
when the A(+) term is subtracted satisfies both the SEC end DEC (see also [22]). When A > 0, 
the model naturally contains two inflationary phases, the fine.1 state of which is de Sitter with 
some unusual vacuum energy. This is important aa it puts the RZ inflation on the same footing aa 
other inflationary models end it shows that the possible explanation of the Large Scale Structure 
using piecewise scale invariant spectrum [14] can be found in it as well. 

We would like to add et this point e technical note about the closed models, in particular 
Bianchi IX (or its isotropic version, the closed Friedman model), for which the NHT is in 
principle j10,12j, not applicable. It is clear that if the threwzurvature of the spatial sections 
is not to large then there might be .a good chance that the model will inflate. Following Wald 
[lo] we can write this condition M, R > 2R,pk, where R,pb,r stands for the curvature of a 
three-sphere of equal volume aa the Bianchi IX in question. If thii condition is satisfied then 
the closed model will also undergo inflation, otherwise it will recollepse. 

Finally, we examined the constraints imposed on the initial conditions due to the finite 
duretion of the R2 inflationary phase. The results found in eqs.(22-25) are similar to those 
found in ref. [20] and 1231 for an RW cosmology of a massive scalar field: the major portion of 
the phase space leads to et leant 70 e-folds of i&&m. One should keep in mind though, that 
when thii statements are maid it ia assumed that the actual probability distribution over the 
set of initial conditions are randomly assigned. The true distribution could be far from uniform. 
Presumably, the proper way to find these would be to use Quantum Cosmology, but so far little 
haa been done in this respect [see for example Page 1241). Only after that, we can have a full 
statement about the likelihood of the inIIationary phase. 

Since the anisotropy and three curvature have already been diluted during the preinflstionary 
phase, the requirement on the duration of the infletionary phases will depends on the choice 
of the length scale up to which we want to heve the scale invariant spectrum of coamologicd 
perturb&me. 

This results can be extended to inhomogeneous spacetimes when the conditions for the NHT 
are satisfied locally (121. Since the typical number of e-folds is much larger than 70, even e. very 
small patch where the conditions can be satisfied, will most presumably be blown to the size of 
the observable universe end beyond. 

After the completion of this work we learn of some independent work by Maeda [25] and 
by Starobinsky end Schmidt and Schmidt [26] w h ere a similar problem is addressed and similar 
conclusions are reached. 
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Figure Caption 
Fig. l.- The Potential G($) for eero and nonzero cosmological constant is plotted as a 

function of $ where + = ln( 1 + 2cR). 
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